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The critical role of migration and invasion in cancer metastasis
warrants new therapeutic approaches targeting the machinery
regulating cell migration and invasion. While 2-dimensional
(2D) models have helped identify a range of adhesion
molecules, cytoskeletal components and regulators that are
potentially important for cell migration, the use of models that
better mimic the 3-dimensional (3D) environment has yielded
new insights into the physiology of cell movement. For
example, studying cells in 3D models has revealed that
invading cancer cells may switch between heterogeneous
invasion modes and thus evade pharmacological inhibition of
invasion. Here we summarize published data in which the role
of cell adhesion molecules in 2D vs. 3D migration have been
directly compared and discuss mechanisms that regulate
migration speed and persistence in 2D and 3D. Finally we
discuss limits of 3D culture models to recapitulate the in vivo
situation.

Introduction

Nearly all adherent cells are able to crawl and migrate under
standard 2D cell culture conditions. Time-lapse recordings of
migrating cells never fail to excite a sense of awe about the
complexity of the migration process, as lamellipodia and filopodia
form, extend and make contact with the matrix, as cells change
their shape, lunge forward, contract and detach. Cell migration
depends on a variety of temporally and spatially orchestrated
parameters, with several hundreds of proteins involved. Although
changes in cell migration after knockout or mutation of a protein
may not be the ultimate proof of a causal relationship; watching
cells migrate and measuring parameters of cell speed and
directional persistence have proven invaluable in elucidating the
functional components regulating intrinsic cell migration in 2D.
A number of studies have now begun to examine these same
parameters using 3D culture systems.

Interstitial Dissemination

The ability of cancer cells to invade tissue surrounding the
primary tumor site, leading to the development of metastatic
tumors, is one of the hallmarks of cancer.1 Disseminating tumor
cells encounter a variety of tissue architectures through which they
must transmigrate. While the majority of tumor cells are
confronted by collagen-rich connective tissue found around most
organs in the body, invasion in the brain represents a specialized
form of transmigration due to the unique makeup of the brain
interstitium. For more detail we direct readers to an excellent,
recent review that provides a comprehensive description of tissue
structures through which cancer cells transmigrate in vivo.2 The
structure and composition of the interstitial tissues determines the
mechanisms that must be employed by the cancer cells for
successful navigation. Gritsenko and colleagues2 suggest three
generic mechanisms employed by invasive cancer cells: contact
guidance along stiff matrix elements through integrin mediated
mechanisms, directed migration toward chemokines and growth
factors and physical pushing through small spaces.

Cell Migration In Vivo

The process of cell migration and invasion is, of course, not
restricted to metastatic cancer. Cell migration and invasion
occurs during embryonic development and continues through-
out adulthood as it is critical for the correct execution of a
variety of biological programs. During embryonic development
there are precise migration and invasion events that are
necessary for the final correct organization of the adult tissue.
A particularly well-studied example of this is during the
development of the mammalian brain, where cells undergo
precisely timed migration events that are essential for the final
tissue organization and wiring of the fully developed brain (for
review, see ref. 3). The migration speed and persistence of
distinct cell populations appear to be important parameters for
determining their final destination in the maturing brain tissue.
Moreover, cell populations change speed as they migrate
throughout different zones of the brain.4 Mutations that alter
speed and directional persistence of migrating neuronal cell
populations can therefore perturb the organization of the brain
tissue into discrete layers.5,6
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The consequences for changes in speed and persistence of
invasive cancer cells are currently less well known. Approaches
that abrogate cell movement in environments that mimic the
tissue organization of the in vivo tumor are generally considered to
be strong candidates for novel therapies to treat metastatic cancer.
Similarly, approaches that do not completely abrogate movement
but instead slow down the rate of cell migration are expected to
restrict the dissemination of cells from the primary tumor and
increase the window of opportunity for localized and targeted
delivery of therapies. In the particular case of highly invasive
primary brain tumors such as the deadly grade IV gliomas (also
known as glioblastoma), there is extensive collateral damage to the
brain tissue as a result of the invading tumor cells, leading to
significant loss of quality of life.7 Thus, even a partial reduction of
tumor invasion may ameliorate some of the collateral damage that
occurs in the brains of these patients. Moreover, targeting the
cell’s migration machinery may in turn sensitize the cells to
different therapies. One example of such sensitization is tumor
cells lacking expression of the invasion/metastasis promoter
NEDD9. These cells appear to concomitantly become sensitized
to the effects of Src kinase inhibition.8 Similarly, decreasing the
persistence of the cancer cell movement will necessarily decrease
the numbers of successful escapers from the primary tumor site.
But to confirm these speculations and expectations, any anti-
invasive therapy must first demonstrate its effectiveness in models
that mimic the natural in vivo 3D organization of the relevant
tissue surrounding a particular tumor.

3D Culture Models

The interactions between cells and the external environment,
either with the ECM or with neighboring cells, are in a literal
sense vitally important. Once thought to solely provide physical
and structural support, the ECM is now known to regulate and
influence survival,9 proliferation,9 migration and adhesion,10,11

morphology,12 internal cellular structures13 and signaling path-
ways.11 During tumorigenesis, cellular interaction with the ECM
can become deregulated not only as a result of altered integrin and
focal adhesion protein expression, but also because tumor cells can
rearrange the local native tissue architecture, alter its chemical
composition, structure and stiffness, which in turn often promotes
cell migration and invasion.14,15 For example, in breast carcinomas
the formation of the distinctive palpable “lump,” known as
desmoplasia, is attributed to tumor cell secretion of platelet
derived growth factor (PDGF). This induces the deposition of
large quantities of collagen and collagen cross-linkers by
surrounding fibroblasts, thus increasing local tissue stiffness and
rigidity.16,17

In vivo, most invading cancer cells encounter two major ECM
groups. The first is the basement membrane that directly interacts
with both the epithelium and endothelium layers. The second is
the interstitial matrix. It harbors numerous collagen isoforms and
fibronectin and is thought to contribute to the overall mechanical
strength of the tissue. In vitro, the extracellular matrix is most
commonly planar, tissue culture-treated plastic or sometimes glass
coated with collagen, fibronectin or other ECM-derived proteins.

Even then, comparative analysis of cell migration and morphology
has revealed striking inconsistencies between cells grown on 2D
surfaces vs. those seeded within 3D matrices.13,18 Therefore, in
attempting to recreate a cell’s in vivo environment, it is not
sufficient to only consider which ECM group the cell type in
question is most likely to interact with; it is equally important that
the 3D structure and mechanical properties of the matrix closely
mirror that of the in vivo environment. Three of the most
commonly used in vitro 3D matrix models—fibrous gels,
basement membrane extracts (or matrigel) and cell-derived
matrices—are discussed in the following sections.

Fibrous gels. Fibrous gels, namely reconstituted collagen and
fibrin gels, aim to replicate the major architectural and structural
components of the extracellular matrix. Collagen and fibrin
emerged as ideal candidates for single-protein 3D matrix models
as both are major structural components of the extracellular
matrix. It is worth noting, however, that interstitial tissue is
composed of heterogenous mixtures of ECM components, which
these gels do not recapitulate.19 Nevertheless, due to the
abundance of collagen and fibrin in vivo, reconstituted fibrous
gels are physiologically compatible with numerous cells types.
Fibrin gels are particularly suitable to study migratory events
involved in wound healing,20,21 while collagen gels are more
suitable to study interstitial cell migration and metastatic
invasion.10,22,23

Not all fibrous gels are created alike, however. Seemingly minor
protocol variations can have major effects on the gel properties.
For instance, an increase in fiber concentration enhances fiber
density,24,25 resulting in an overall increase in the mechanical
strength of the gel.26 Additionally, the effective pore size of the
fibrous meshwork decreases at higher fiber concentrations,27 thus
increasing steric hindrance for migrating cells.28,29 The gelation
temperature will also affect the mechanical and structural details
of the gel; for instance, the pore size and fibril diameter decreases
and the number of fibrils formed increases at higher polymeriza-
tion temperatures.27,30

The production details of harvesting, dissolving and purifying
collagen or fibrin from different animal tissues are also a source of
substantial variability. This is especially true in the case of
collagen, where fibers harvested for example from bovine Achilles
tendon demonstrate a higher denaturation temperature and a
thicker fiber diameter when compared with collagen harvested
from rat tail tendon.27,31,32 The method for dissolving the
collagen, whether with acid or by proteolytic digestion (i.e.,
pepsin or trypsin) similarly influences the structure and
polymerization kinetics of the reconstituted gels. Acid-dissolved
collagen will begin the fibrillogenesis process more rapidly,31,33,34

showing characteristic fiber lengths and diameters that closely
resemble those observed in vivo.35 In comparison, collagen
extracted by proteolytic enzyme digestion shows significantly
smaller fiber diameters and reduced fibril formation, thus
reducing the gels’ strength and rigidity.30,31,36

Basement membrane extracts. Matrigel is a reconstituted
basement membrane matrix product extracted from Engelbreth-
Holm-Swarm (EHS) mouse sarcoma cells. When polymerized,
matrigel mimics the microenvironment of in vivo extracellular
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basement membrane.37-39 Composed chiefly of laminin, collagen
IV isoforms and heparan sulfate proteoglycans, basement
membranes provide a unique signaling platform for cells that
adhere to it.40,41 Matrigel 3D substrates can restore the normal
morphological characteristics and specific cell functions that
would otherwise be lost under standard cell culture conditions,
especially in epithelial-,42,43 endothelial-44 and Schwan-derived
cells.45 But this is not generally true for all cells; for instance
fibroblasts that are not normally in contact with a basement
membrane in vivo adopt a noticeably uncharacteristic rounded
morphology and exhibit a non-migratory phenotype when
cultured in matrigel.12,39

Cell-derived matrix. When cultured at high density, fibroblasts
“bioengineer” their own extracellular matrix.46 This cell-derived
matrix (CDM) is composed of fibronectin,47 collagen types I and
II,48 hyaluronic acid49 and heparin sulfate proteoglycans.49,50

CDMs mirror the flexibility and malleability of an in vivo
ECM, as cells seeded onto a CDM can reorganize and modulate
the matrix, recapitulating the migration and invasion events of
both physiological and metastatic processes observed in
vivo.11,12,51 However, as with all protocols, there are limitations
to this method also. Somewhat problematic is the poorly defined
and highly variable composition of fibroblastic CDMs. Moreover,
although CDMs display a 3D matrix organization, these matrices
are typically thin and therefore subject to the rigidity of the
underlying 2D surface. Regardless, the use of CDM has permitted
insights into the signaling pathways that govern proliferation,
morphology, cell-matrix attachments and individual cell migra-
tion, all of which impact and promote tumorigenesis.11,12,51

Cell Adhesion

The role of focal adhesions has been thoroughly studied in 2D
cultures and has provided important insight into the mechanisms
of cell movement in 2D. However, as investigators have turned to
the analysis of focal adhesions in 3D, there has been conflicting
reports regarding their presence and detection in 3D.12,52,53 We
direct readers to the excellent review by Harunaga54 for a
comprehensive analysis of the issue of cell-ECM adhesions in 3D
culture models. The upshot of which is that focal adhesions do
exist in 3D, but the composition, mechanical properties and
structure of the 3D matrix profoundly affects the appearance and
distribution of focal adhesions.12

In Table 1 we summarize data from studies in which migration
parameters of speed and persistence have been directly compared
between 2D and 3D culture conditions in the same cell
background. Treatments that are expected to promote invasion
and metastasis in vivo such as stimulation with EGF, complete
oncogenic transformation following combined expression of
ErbB2 and 14-3-3f and high a5β1 expression all promoted
faster migration speed in 3D cultures, yet had variable effects in
2D (Table 1). For example, breast epithelial cells induced to
undergo oncogenic transformation displayed reduced migration
speed in 2D,55 while EGF treatment of glioblastoma cells
increased 2D speed.56 Similarly, cells from a metastatic
progression series showed increasing speeds in 3D collagen gels,

but decreasing speeds in 2D.57 Without exception, the knock-
down or loss of cytoplasmic members of focal adhesion sites
(p130Cas, NEDD9, vinculin, talin, FAK, VASP, paxillin and
Hic-5) inhibited cell migration speed in 3D cultures, yet again
varied results are seen in 2D cultures. Depletion of these
molecules variously increased 2D speed (p130Cas, NEDD9 and
vinculin knockout fibroblasts), decreased 2D speed (talin and
FAK) or did not alter speed relative to controls (vinculin shRNA
in HT1080 fibroblasts and VASP). With the exception of EGF
stimulation and high a5β1 expression, all treatments resulted in
reduced intrinsic persistence of migration in 3D. As was seen for
the speed data, there is no clear correlation between effects on
migration persistence in 2D and effects seen in 3D.

Forces in Cell Migration

The disparate results for 2D and 3D speed and persistence in
exactly the same cell background highlight critical differences
between these different model systems. Cell migration in 2D
differs in one fundamental aspect from 3D migration in that steric
hindrance is absent. In 2D, the cell needs to overcome only the
frictional (drag) forces from the surrounding liquid and the 2D
surface. At a speed of only a few microns per minute, liquid drag
can be neglected, as the force of a single myosin motor would be
sufficient to propel the cell forward. Thus, the better a cell adheres
to its substrate, the greater the contractile force needed to
overcome the adhesive friction from cell-matrix adhesions; as a
general rule, a cell with poorer adhesion can migrate faster on a
2D surface. Poorer adhesion can either be a consequence of a
lower matrix protein density on the surface,58 or a consequence of
a reduced expression level of adhesion proteins on the cell (for
examples, see Table 1). Of course, a minimum amount of
adhesion is essential for cell movement as otherwise the cell
cannot polarize or activate its contractile machinery.58 Thus, in a
2D context, changes in focal adhesion dynamics59,60 dominantly
effect cell migration speed and likely explain the disparate effects
on 2D cell migration seen following depletion of focal adhesion-
associated molecules (Table 1).

In 3D, in addition to frictional forces, the cell also has to
overcome forces that arise from the steric hindrance of the matrix
network, provided that the pores and crevices through which the
cell migrates are smaller than the cell itself. Here, the cell has two
options. It can either deform itself until it can fit through the
pores; or it can deform the network until the pores are large
enough for passage. Switching between cell body deforming vs.
matrix deforming migration strategies is evidenced by changes in
cell morphology from rounded cell shapes to elongated cell
shapes.61 Deforming the cell body sufficiently to squeeze through
small pores requires forces for overcoming the elastic and frictional
forces of the cytoskeleton. The cell can decrease cytoskeletal
elasticity (stiffness) and friction by depolymerizing cytoskeletal
filaments, but although this would reduce the forces necessary to
deform the cell until it fits through a pore, it also reduces the
force-generating capacity of the acto-myosin contractile apparatus.

Analogously, deforming the matrix network requires forces for
overcoming the elastic and frictional forces of the matrix. By
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secreting matrix-digesting enzymes, the cell can soften the
network structure or increase its porosity, thereby reducing the
necessary forces for deforming the matrix network until the cell
can fit through. But at the same time this also limits the ability of
the cell to adhere to the matrix, which is a prerequisite for
contractile force generation. Therefore, does the speed of intrinsic

cell migration in 3D give clues as to whether cells are using the
rounded (cell body deforming) vs. elongated (matrix deforming)
cell migration strategies? Initial descriptions suggested that there is
no loss of cell speed between the two modes.10 However, absolute
cell speed depends on the make-up of the surrounding matrix.
While partial transformation of breast epithelial cells (Erb2 or

Table 1. Studies reporting cell speed and persistence in 3D cultures compared with 2D migration parameters in the same cell background

Adhesion
molecule

Cell line 2D 3D

Speed Persistence Speed Persistence

p130Cas shRNA52 HT1080
fibrosarcoma

↑ ↑ 3D collagen
↓

↓

NEDD9 knockout60,† Fibroblast ↑ ND 3D collagen
↓

↓

Vinculin knockout87 Fibroblast ↑ ↑ 3D collagen
↓

ND

Vinculin shRNA52 HT1080
fibrosarcoma

— — 3D collagen
No change

↓

b3 integrin
knockout59,*

Fibroblast ↑ ↓ CDM#

↑
↓

EGF stimulation56 U87MG
glioblastoma

↑ ↓ 3D collagen||

↑
3D collagen

↑

b1 integrin
inhibition52

DU-145
prostate cancer

Biphasic ND Low matrigel %:
↑

High matrigel %:
↓

ND

Talin shRNA52 HT1080
fibrosarcoma

↓ ↑ 3D collagen
↓

↓

FAK shRNA52 HT1080
fibrosarcoma

↓ ↑ 3D collagen
↓

↓

VASP shRNA52 HT1080
fibrosarcoma

— — 3D collagen
↓

↓

Transformation
progression
series:55

(1) +ErbB2
(2) +14-3-3f

(3) +ErbB2+14-3-3f

MCF10a non-
transformed

breast epithelia

(1) ↑
(2) ↓
(3) ↓

(1) ↓
(2) ↓
(3) ↓

“Compliant”
3D collagen4:

(1) —
(2) —
(3) ↑
“Stiff”

3D collagen1:
(1) ↓
(2) ↓
(3) ↑

“Compliant” 3D collagen4:
(1) —
(2) —
(3) ↓
“Stiff”

3D collagen1:
(1) ↓
(2) ↓
(3) ↓

Metastasis progression series:57

(1) 67NR—tumorigenic
(2) 168FARN—micrometastases

(3) 4T07—secondary micrometastases
(4) 66c14—secondary Tumors

NmuMg mouse
breast epithelial

line

↓
(relative

to
67NR)

↓
(relative

to
NmuMG)

Collagen gel:
↑

(relative to
67NR)

Collagen gel:
66c14
↓

Paxillin siRNA94," MDA-MB-231
breast cancer

ND ND CDM#

↓
↓

Hic-5 siRNA94 MDA-MB-231
breast cancer

ND ND CDM#

↓
↓

High a5b162 MDA-MB-231
breast cancer

ND ND 3D collagen
↑

↑

*Reduced focal adhesion length and increased rates of focal adhesion turnover; †increased rates of focal adhesion disassembly; 4elastic modulus = 103 Pa;
1elastic modulus = 391 Pa; ||effects were compared across a range of collagen concentrations (2, 3 and 4 mg/mL); "measured dynamics of GFP-tagged talin
adhesions in CDM and showed multiple roles—paxillin depletion caused increased numbers of highly dynamic, peripheral, short-lived adhesions, increased
stability of more centrally located adhesions accompanied by reduced rates of adhesion assembly and disassembly. #cell-derived matrix; ND, not
determined; —, no change.
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14-3-3f overexpression) did not affect cell speed in “compliant”
collagen gels (103 Pa elastic modulus), cells had reduced
migration speed in “stiff” collagen gels (391 Pa elastic modulus).55

Similarly, increasing steric hindrance at high collagen concentra-
tions can inhibit cell invasion.62 Thus the concentration of the
matrix, extent of cross-linking and matrix pore size all critically
determine cell speed and moreover, whether a matrix deforming
or cell body deforming mode of invasion is possible. Given the
ultimate goal of determining the molecular mechanisms that
promote cancer cell invasion and metastasis, it will be increasingly
important to adopt a range of 3D culture models that can mimic
the various different extracellular environments encountered by
invading cancer cells in vivo. Two examples from recent studies
with opposing findings highlight the problem in interpreting data
that are measured under only a single condition: Several studies
have reported that invasive, metastatic cancer cells are softer than
their nonmetastatic counterparts derived from the same tissue63,64

when measured under non-adherent conditions. By contrast, in
adherent cancer cells, the opposite behavior is seen, with more
invasive cells tending to be more contractile and consequently
stiffer.65,66

Predictive Power of 3D Invasion Models
for Cancer Metastasis

The goal of the 3D cell migration models is to better mimic the
physiological environment. An important question in cancer
research therefore is how successfully data from the 3D models
predicts in vivo metastatic behavior. To address this question we
have searched the literature for examples where adhesion
molecules that have been directly compared in 2D vs. 3D models
(Table 1) have been analyzed using in vivo models of metastasis
and invasion (Table 2). There is an extensive literature on mouse
models of cancer cell invasion, but for our purposes we have
limited our analysis to studies where adhesion molecules from
Table 1 have been manipulated by overexpression or knockdown.
It is noticeable that surprisingly few studies have been performed
to directly test the effects of these molecules on in vivo tumor
invasion and metastasis—the bulk of studies have focused on
tumor initiation. Our search yielded examples for FAK, p130Cas,
NEDD9, vinculin, talin, β1 integrin and a5β1 and avβ3 integrin
receptors (Table 2).

The in vivo models used in the summarized studies can be
divided into three categories: (1) tissue-specific neo-oncogenesis
that recapitulates carcinoma progression seen in human dis-
ease67-72 and orthotopic injection: both have the advantage of
mimicking the correct tissue context of the human disease,73-77

(2) sub-cutaneous injection at non-orthotopic sites78-80 and
(3) intravenous injection.8,81-85 In the case of the first two
categories successful metastasis requires the tumor cells to invade
locally, intravasate into blood or lymph vessels, extravasate at
secondary sites and form new tumors. Conversely, intravenous
injection does not depend on the formation of a primary tumor,
thus allowing separation of the effects of primary tumor formation
from dissemination into secondary tissues. This approach is
frequently used when the molecule or pathway of interest inhibits

initial tumor formation. A limitation is that this does not address
initial migration and invasion away from primary tumor sites. A
further important caveat to all of these models is that none
measure migration and invasion alone. The ability of the tumor
cells to disseminate and form secondary tumors is a multifactorial
process, which additionally requires survival in the circulation,
adhesion to vessel endothelial layers and transmigration through
the endothelium. Below we compare data for 3D migration speed
and persistence with in vivo metastasis results in response to
altered adhesion molecule expression and activities.

FAK, p130Cas, talin and vinculin. To date, a large number of
studies have focused on the role of FAK for in vivo metastasis.
FAK has long been known to be upregulated in a wide variety of
invasive cancer types (reviewed in ref. 86). Cancer cells in which
FAK is either homozygously deleted or downregulated via
expression of a dominant negative form of FAK universally
display reduced metastatic tumor formation (Table 2), matching
the findings that FAK depletion reduces 3D cell migration speed
(Table 1). FAK depletion inhibited metastatic tumor formation in
all three categories of in vivo invasion models (see above).
Congruent results were also seen between 3D culture migration
speed and in vivo metastases for p130Cas and talin (Tables 1 and
2). However, the data are not so clear for vinculin. The depletion
or absence of vinculin had no effect52 or led to reduced migration
speed87 in 3D models. In contrast, a high level of exogenous
vinculin expression reduced lung tumor formation in vivo.80

NEDD9. NEDD9 overexpression promotes invasion and
metastasis in a range of cancer cell types.88 In apparent
concordance with this, NEDD9 depletion reduces fibroblast
migration in 3D collagen gels (Table 1). However, while
NEDD9−/− tumor cells in a model of oncogenic transformation
of mammary epithelia had a tendency to form fewer metastatic
tumors,67 tail vein injection of these isolated cells revealed
aggressive lung tumor formation.8 Potentially, this may represent
a switch to the amoeboid/cell deforming invasion mode that
occurs following NEDD9 depletion,22 which may promote lung
colonization. By contrast, the dense, rigid matrix that is reported
to characteristically surround breast tumors,89 which is presum-
ably present in the transformed breast epithelia model, may
obviate the rounded/cell deforming mode of invasion.
Alternatively, increased metastatic lesions following tail vein
injection may reflect changes in survival in circulation, adhesion
and transmigration of the endothelial cell layer of the vessel.

β1 integrin. The effects of β1 integrin depletion on migration
in matrigel are dependent on the matrigel concentration; at high
concentrations when the gel is less deformable, the loss of β1
impaired the ability of the cells to invade.90 These results are in
agreement with in vivo data where β1 depletion also caused
reduced metastatic lesions (Table 2). In one of the studies,
increased numbers of tumor emboli in the lymphatic vasculature
were noted.68 This suggests that the cells in this model were
competent to locally invade and intravasate, but were not able to
execute the final stages required for secondary tumor formation.

a5β1 and avβ3 integrin receptors. The finding that high level
a5β1 is associated with enhanced migration speed and persistence
of breast cancer cells in 3D collagen gels62 appears to agree with
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reports that a5 depletion reduced lung colonization in a tail vein
injection model.83 However, when a5 and β1 are analyzed
separately, the findings are conflicting. Exogenous a5 expression
was shown to significantly reduce lung and extrapulmonary
metastases arising from injected colon cancer cells.85 Upregulation
of β3 expression increased bone and lung metastases,76,81 yet
decreased lung tumor formation in an invasive melanoma

model.91 Fibroblasts lacking β3 integrin expression have signific-
antly faster migration speeds and reduced migration persistence in
a 3D CDM assay.59 It is difficult to estimate to what degree the
usage of different cell types has contributed to the disparate
findings. For instance, the differential expression of other integrin
receptors in different cell types may have influenced the invasion
and metastasis behavior. In particular, it has been suggested that

Table 2. Summary of in vivo metastasis data, targeting the adhesion molecules described in Table 1

Adhesion
molecule

In vivo model Metastasis phenotype

FAK Intravenous injection
of FAK−/− tumor cells82

Failed to form lung tumors; cells retained in the lung capillary bed were
rounded and lacked membrane extensions into the vessel

Activated ErbB2 mammary tumor model with
epithelial-specific FAK deletion69

Metastatic lung tumors all negative for cells with homozygous deletion of
FAK

Mammary epithelium-specific deletion of FAK in
MMTV-PyVmT Mouse Tumor Model70

Metastatic lung tumors all negative for cells with homozygous deletion of
FAK

Mammary epithelium-specific deletion of FAK in
MMTV-PyVmT Mouse Tumor Model71

Reduced lung tumor metastases

Orthotopic injection of pancreatic cancer cells treated with
FAK siRNA73

Prevented formation of liver metastases

p130Cas Mammary tumor model—injection of cells expressing
inducible p130Cas shRNA77

Inhibits lung colonization

Athymic nude mice injected sub-cutaneously with
p130Cas−/− fibroblasts transformed with oncogenic

Src and expressing p130Cas78

Exogenous p130Cas expression increased formation of metastatic lung
tumors after surgical removal of primary tumors; authors comment that “the
capacity of the cells to invade through matrigel was strongly correlated with

their capacity to invade and metastasize in vivo”

Vinculin Exogenous vinculin expression in highly metastatic rat
adenocarcinoma injected into foot pad80

Highest levels of vinculin expression suppressed formation of lung
metastases, low to moderate expressors formed tumors in lymph nodes

close to injection site but failed to form lung metastases

NEDD9 Mammary epithelium-specific deletion of NEDD9 in
MMTV-PyVmT Mouse Tumor Model67

Trend to fewer lung metastases

Tail vein injection of NEDD9-null primary tumors8 Tumors formed of null-cell lines exhibited increased aggressiveness, with all
injected mice generating secondary tumors

Talin Tail vein injections of prostate cancer cell lines treated
with talin shRNA84

Reduced numbers of metastatic lung lesions

avb3 Orthotopic injection into mammary fat pad with mammary
carcinoma cell line expressing exogenous b376

Drove unique formation of bone metastases; authors show increased
haptotactic and chemotactic response to bone-matrix proteins and

soluble factors

MDA-MB-435 breast cancer cells expressing constitutively
active avb3 injected into mouse tail vein81

Enhanced lung colonization

Intravenous injection of metastatic avb3 negative
melanoma cells expressing exogenous b391

Re-expression of b3 in metastatic, b3 negative lines reduced lung
colonization

b1 integrin Conditional deletion of b1 integrin from mammary epithelia,
crossed with MMTV/activated erbB272

Significantly reduced formation of lung metastases

Orthotopic injection of pancreatic cancer cells treated
with b1 integrin siRNA74

Absence of any metastatic tumors; controls treated with a2 or a3 integrin
subunit siRNA displayed metastatic tumors

Conditional deletion of b1 integrin from pancreatic
b cells crossed with Rip1Tag2 mice68

Loss of b1 expression induced increased tumor cell emboli in the lymphatic
vasculature but no metastasis formation; similarly, tail vein injections of b

tumor cells lacking b1 integrin expression did not form metastases

Ras-myc transformed b1 null ES cells injected
sub-cutaneously79

Reduced numbers and size of metastatic foci in the lung

a5b1 integrin HT-29 colon cancer cells expressing exogenous a5
integrin injected intravenously85

Significantly reduced lung and extrapulmonary metastases

Lewis Lung Carcinoma cells expressing a5 shRNA injected
into tail vein83

Fewer lung tumors

www.landesbioscience.com Cell Adhesion & Migration 429



cross-talk between recycling a5β1 and aVβ3 receptors may be an
important mechanism of regulating migration persistence.92 These
data highlight the need for direct comparison between 3D culture
models and in vivo metastasis models for validation.

Conclusion

Our comparison of the effects of a handful of studies that have
investigated adhesion proteins in 2D vs. 3D culture models with
in vivo measurements of metastasis has revealed a complex
picture. For instance, it is notable that without exception, the
depletion of the adhesion molecules summarized in Table 1
resulted in decreased migration persistence in 3D models but not
always in reduced metastasis formation in vivo (Table 2). To
accurately predict in vivo invasion behavior, 3D model systems
are required that faithfully replicate the physical characteristics of
the environments encountered by transmigrating cancer cells. In
particular it will be critical to develop model systems mimicking
the interstitial tissue organization both at the primary tumor site

and at the metastatic niches that characterize different tumors.
Such tailored 3D models to map the journey taken by
metastasizing cancer cells are still lacking for interactions with
the vasculature, host immune responses and other cell-cell
interactions, and can generally mimic only short-term (, 1
week) conditions.93 But even with these limitations, 3D models
are essential for gaining a basic understanding of cell migration
and invasion through tissue and will ultimately lead to novel
cancer therapies. Invasion away from the primary tumor site
fundamentally underpins metastatic progression, and treatments
that target invasion therefore hold the promise of significantly
improving survival rates for most cancers.
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